赌博网-赌球网址-体育_百家乐官网_新全讯网22335555 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

太阳城二手房| 足球百家乐网上投注| 水果机赌博| 百家乐官网新庄| 百家乐官网园云鼎娱乐网| 百家乐桌现货| 申扎县| 2024地运朝向房子| 威尼斯人娱乐城网络博彩| 网上现金棋牌| 百家乐扑克玩法| 龙都棋牌下载| 百家乐官网三号的赢法| 永利博百家乐官网游戏| 百家乐双面数字筹码| 大发888玩家论坛| 百家乐官网赌博走势图| 百家乐技真人荷官| 北辰区| 百家乐天下第一缆| 赌场里的美少年| 南京百家乐官网赌博现场被| 百家乐娱乐平台代理佣金| 百家乐官网注码调整| 百家乐游戏制作| 网上赌百家乐官网正规吗| 利高百家乐娱乐城| 大发888 大发娱乐城| 富二代百家乐官网的玩法技巧和规则 | 娱乐百家乐官网的玩法技巧和规则| 大发888娱乐城ipad| 百家乐官网创立几年了| 威尼斯人娱乐网假吗| 百家乐官网出千的高科技| 大发888娱乐城下| 百家乐官网筹码套装100片| 威尼斯人娱乐网代理注| 百家乐官网大赌场娱乐网规则 | 威尼斯人娱乐城信誉| 大西洋百家乐官网的玩法技巧和规则| 博e百|