赌博网-赌球网址-体育_百家乐官网_新全讯网22335555 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

新世纪娱乐成| 皇冠投注網| 百家乐开户博彩论坛| 大发888娱乐城lm0| 百家乐官网赌博机怎么玩| 百家乐娱乐优惠| 瑞安市| 百家乐如何看面| 大发888登陆器下载| 破解百家乐官网游戏机| 精通百家乐的玩法技巧和规则| 百家乐官网鸿泰棋牌| 威尼斯人娱乐场开户| 威尼斯人娱乐城地址lm0| 百家乐官网和局投注法| 女神百家乐娱乐城| 新手百家乐官网指点迷津| 百家乐官网高手论| 百家乐怎么对冲打| 百家乐官网心态研究| 百家乐在线洗码| 百家乐官网必赢外挂软件| 百家乐庄闲和的倍数| 金百亿百家乐官网娱乐城| 水晶百家乐官网筹码| 包赢百家乐的玩法技巧和规则| A8百家乐官网娱乐网| 皇冠网投| 金世豪百家乐的玩法技巧和规则| 百家乐官网庄闲预测| 博彩公司排名| 杨氏百家乐必胜公式| 百家乐官网正品地址| 大连娱网棋牌步步为赢| 百家乐和的几率| 御金百家乐官网娱乐城| 今晚六合彩开什么| 百家乐官网群到shozo网| 百家乐官网分析下载| 百家乐机器出千| 3U百家乐官网的玩法技巧和规则|